

- Angle of elevation: the angle between the horizontal and a direction above the horizontal
- Angle of depression: the angle between the horizontal and a direction below the horizontal
- Bearings or compass bearing: the direction measured as an angle from north, clockwise

B. TRICONOMETRICAL FUNCTION

$$\cos \theta = \frac{adjacent}{hypotenuse}$$

$$\tan \theta = \frac{opposite}{adjacent}$$

$$\sec \theta = \frac{1}{\cos \theta}$$

$$\csc \theta = \frac{1}{\sin \theta}$$

$$\cot \theta = \frac{1}{\tan \theta}$$

- Special cases:
 - 1. The angles 30° and 60°

$$\sin 30^{\circ} = \frac{1}{2}$$

$$\cos 30^{\circ} = \frac{\sqrt{3}}{2}$$

$$\sin 60^\circ = \frac{\sqrt{3}}{2}$$

$$\cos 60^{\circ} = \frac{1}{2}$$

- \blacksquare tan $60^{\circ} = \sqrt{3}$
- 2. The angle 45°

$$\cos 45^\circ = \frac{1}{\sqrt{2}}$$

$$\blacksquare$$
 tan 45° = 1

3. The angles 0°-90°

$$\sin 0^{\circ} = 0$$

$$\cos 0^{\circ} = 1$$

$$\blacksquare$$
 $\tan 0^{\circ} = 0$

$$\cos 90^\circ = 0$$

Positive and negative angles: Unless given in the form of bearings, angles are measured from the x-axis. Anticlockwise is taken to be positive and clockwise to be negative.

C. TRICONOMETRICAL FUNCTIONS FOR ANGLES OF ANY SIZE

Identities:

$$(\cos \theta)^2 + (\sin \theta)^2 = 1$$

$$\blacksquare 1 + (\tan \theta)^2 = (\sec \theta)^2$$

$$(\cot \theta)^2 + 1 = (\csc \theta)^2$$

D. COSINE, SINE, AND TANGENT GRAPH

E. SOLVING EQUATIONS USING GRAPHS OF TRICONOMETRICAL FUNCTIONS

The functions cosine, sine, and tangent are all many-one mappings, so their inverse mapping are one-many. A functions has to be either one-one or many-one, so in order to define inverse functions for cosine, sine, and tangent, a restriction has to be placed on the domain of each so that it becomes a one-one mapping. Restricted domains list.

Function	Restricted domain	Range
	(degrees)	
$f(\theta)$	-90° ≤ θ	$-1 \le f(\theta)$
$= \sin \theta$	≤ 90°	≤ 1
$g(\theta)$	$0^{\circ} \leq \theta$	$-1 \le g(\theta)$
$=\cos\theta$	≤ 180°	≤ 1
$h(\theta)$	-90° ≤ θ	$-\infty < h(\theta)$
$= \tan \theta$	≤ 90°	< ∞
		All real
		numbers.

Inverse	Domain	Range
function		
$f^{-1}(\theta)$	$-1 \le \theta \le 1$	-90°
$= \sin^{-1} \theta$		$\leq f^{-1}(\theta)$
		≤ 90°
$g^{-1}(\theta)$	$-1 \le \theta \le 1$	0°
$= \cos^{-1} \theta$		$\leq g^{-1}(\theta)$
		≤ 180°
$h^{-1}(\theta)$	$-\infty < \theta$	-90°
$= \tan^{-1} \theta$	< ∞	$\leq h^{-1}(\theta)$
	All real	≤ 90°
	numbers.	

When you try to find $\cos^{-1} 0.5$ it will return just one answer, this value is called the **principal value** and it lies in the restricted domain.

To solve a trigonometric equation, you need to find all the roots in a given range.

The graphs of cosine, sine, and tangent together with their principal values (shows in blue).

X

Find values of θ in the interval $-360^{\circ} \le \theta \le 360^{\circ}$ for which $\sin \theta = 0.5$ Solution:

 $\sin \theta = 0.5 \Rightarrow \sin^{-1} \theta = 30^{\circ}$. The graph of $\sin \theta$.

So, the values of θ for which $\sin \theta = 0.5$ are -330°, -210°, 30°, 150°.

F. CIRCULAR MEASURE

Some measure angles are degree, radian (rad), and grade (gra). The grade is a unit which was introduced to give a means of angle measurement which was compatible with the metric system. These are 100 grades in a right angle, so when you are in the grade mode, $\sin 100 = 1$, and $\sin 90 = 1$.

The radian is sometimes referred to as the natural unit of angular measure.

1 rad = 57.3°

Sometimes 1 radian written as 1°. Since the circumference of a circle is given by $2\pi r$, it follows that the angle of a complete turn is 2π radians.

 $360^{\circ}=2\pi$ radians.

$$1^{\circ} = \frac{2\pi}{360} rad = 0.0175 \text{ rad}$$

- To convert degrees into radians,
- multiply by $\frac{\pi}{180}$ To convert radians into degrees, multiply by $\frac{180}{\pi}$

G. THE LENGTH OF AN ARC OF A CIRCLE

Arc length :
$$\frac{\theta}{2\pi} \cdot 2\pi r = r \cdot \theta$$

H. THE AREA OF A SECTOR OF A CIRCLE

Minor sector: the smaller sector than a semicircle.

Major sector: The larger sector than

semicircle.

Area of
$$\operatorname{sector} : \frac{\theta}{2\pi} \cdot \frac{1}{2\pi} \cdot$$

Area of
$$sector : \frac{\theta}{2\pi} \cdot \pi r^2 = \frac{1}{2}\theta r^2$$

Area of sector : $\frac{\theta}{2\pi} \cdot \pi r^2 = \frac{1}{2}\theta r^2$

4

- The sine rule : $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$ or : $\frac{\sin A}{a} = \frac{\sin B}{\sin B} = \frac{\sin C}{\sin C}$
- The cosine rule : $a^2 = b^2 + c^2 2bc \cos A$ or $\cos A = \frac{b^2 + c^2 a^2}{2bc}$
- \blacksquare The area of any triangle ABC = $\frac{1}{2}ab \sin C$.

I. TRANSFORMATIONS AND CRAPHS OF TRICONOMETRICAL FUNCTIONS

$$y = \pm A \operatorname{trig} B(x \pm C) \pm D$$

- Amplitude
- The amplitude of a sinusoidal trig function (sine or cosine) is it's 'height,' the distance from the average value of the curve to its maximum (or minimum) value.
- \blacksquare amplitude = |A|
- The other trig functions (tangent, cotangent, secant, and cosecant) do not have an amplitude, but multiplication by A will affect their steepness. Note that a negative value of A will flip the graph of any function across the x-axis.
- Period
- The period of any trig function is the length of one cycle. $\sin\theta$, $\cos\theta$, $\sec\theta$, and $\csc\theta$ all have a period of 2π , while $\tan\theta$ and $\cot\theta$ have a period of π .
- $B = \frac{P}{|P'|}$
- P = original period
- P' = period in question/new period
- When |P'| is larger than one, the new period is smaller than the original, so the function will appear horizontally compressed. When |P'| is less than 1, the period is larger than the original, and the function will appear stretched.
- Phase shift
- \blacksquare Phase shift = $\frac{c}{r}$
 - (+) : the graph will shift to the right.
 - (−) : the graph will shift to the left.

- Vertical shift
 - (+): the graph will shift up.
 - (-): the graph will shift down.

Exercise

Diagram below shows sector OPQ with center
O and sector PXY with center P.

Given that $Q=8\ cm$, $PY=3\ cm$, $< XPY=1.2\ rad$ and the length of arc $PQ=6\ cm$, calculate

- a) The value of θ , in radian.
- b) The area, in cm^2 , of the shaded region.

Solution:

- a) $s = r\theta$ $6 = 8 \cdot \theta$ $\theta = 0.75 \text{ rad}$
- b) Area of the shaded region = Area of sector OPQ - Area of sector PXY = $\frac{1}{2} \cdot (8)^2 \cdot (0.75) - \frac{1}{2} \cdot (3)^2 \cdot (1.2)$ = 24 - 5.4= 18.6 cm^2
- 2. Express $\frac{tan^2\theta-1}{tan^2\theta+1}$ in the form $asin^2\theta+b$, where a and b are constant to be found. Solution:

$$\begin{split} \frac{\sin^2\theta}{\frac{\cos^2\theta}{\cos^2\theta}} - 1 \\ \frac{\sin^2\theta}{\cos^2\theta} + 1 \\ = \frac{\frac{\sin^2\theta - \cos^2\theta}{\cos^2\theta}}{\frac{\sin^2\theta + \cos^2\theta}{\cos^2\theta}} \\ = \frac{\sin^2\theta - \cos^2\theta}{\sin^2\theta + \cos^2\theta} \\ = \frac{\sin^2\theta - (1 - \sin^2\theta)}{1} \\ = 2\sin^2\theta - 1 \end{split}$$